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The application of an intermittent potential yields the maximum rate of electrolysis under non-d.c., 
mass transfer controlled conditions. A numerical solution was obtained to calculate the average current 
density under the intermittent potential condition. It is shown that the maximum rate of electrolysis 
for the intermittent potential case and consequently for all non-d.c, cases cannot exceed that under d.c.. 
conditions. 
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concentration of the reacting ion 
concentration of the reacting ion in the 
bulk 
dimensionless concentration defined in 
Equation 6 
diffusion coefficient 
the d.c. limiting current density 
average limiting current density under 
intermittent potential conditions 

time 
axial co-ordinate 

coefficients of the series in Equations 1 
12, 13 and 16 
Nernst diffusion layer thickness 
dimensionless axial co-ordinate defined 
in Equation 6 
constants defined in Equation 14 
constant defined in Equation 15 
dimensionless time defined in 
Equation 6 
dimensionless on-period and cycle 
period, respectively 

There is a considerable amount of confusion in the 
literature concerning the maximum rate of elec- 
trolysis under non-d.c, conditions. For instance, 
Ozerov et al. [1] claimed that the rate of elec- 
trolysis could be increased indefinitely in pulsed 
electrolysis by decreasing the duration of the 
pulsed current. However, Cheh [2] and more 
recently, Viswanathan et al. [3] showed that 
although the magnitude of the instantaneous 
applied current could be considerably higher than 
that of d.c. electrolysis under mass transfer con- 
trolled conditions, the limiting overall electrolysis 
rate was in general lower. In electrodeposition 
practice, Avila and Brown [4] reported that a 
faster deposition rate could be achieved by pulsed 
electrolysis. The apparent inconsistency can be 
resolved to a large extent by considering the 
following viewpoints. The maximum rate of elec- 
trolysis of a single ion is reached at an applied 
current density which causes the concentration of 
the ion first to become zero at the electrode- 
solution interface. This current density is defined 
as the limiting current density by theoretical 
electrochemists. Cheh [2] has extended this 
concept to pulsed electrolysis by defining the 
limiting current density as the current density that 
causes the lowest surface concentration of the 
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reacting ion to be zero. However, in electro- 
deposition practice, the limiting current density 
for deposition is defined as the maximum current 
density for which an acceptable deposit may still 
be obtained. Consequently, the true maximum 
rate of electrolysis is generally higher than the 
limiting rate as defined by electroplaters. Due to 
the improved deposit properties obtained by 
pulsed electrolysis, it is therefore possible for the 
optimum deposition rate under pulsed conditions 
to exceed that under d.c. conditions. Most 
recently, Ibl et al. [51 reported the application 
of very short pulses of current densities which 
were many orders of magnitude larger than prac- 
tical d.c. current densities. 

Among the three types of pulsed electrolysis, 
i.e., pulsed current, pulsed potential and inter. 
mittent potential, it can be stated that based on 
physical reasoning the application of intermittent 
potential leads to the maximum rate of electroly- 
sis. This is because for the intermittent potential 
case the surface concentration of the reacting ion 

is always zero during the period when the potential 
is on (the on-period) whereas for the pulsed 
current case, the surface concentration of the 
reacting ion reaches zero only at the end of the 
on-period. Also, for reversible reactions, 
Viswanathan and Cheh [6] have shown that for 
the pulsed potential case, the polarity of the 
applied current is reversed as the potential of the 
electrode is changed. It is also interesting to note 
that the pulsed current and intermittent potential 
cases become identical to each other as both the 
on-period and the cycle time approach zero. 

In this paper, a numerical solution was obtained 
to calculate the rate of electrolysis under inter- 
mittent potential conditions. The results were 
then compared with those from d.c. electrolysis. 

2. Theoretical 

Following the same approach as Cheh [2] with its 
justification as verified by Viswanathan et al. [3], 
the following diffusion equation is used to describe 
our system, under mass transfer controlled con- 
ditions 

ac ~2c 
- O ( 1 )  

~t ~z 2 

where c is the concentration of the reacting species, 

D is its diffusion coefficient, t is time and z is the 
axial co-ordinate. For the case of intermittent 
potential, the boundary conditions are as follows: 

e = c= at t = 0 and all z (2) 

c = c= a t t > 0 a n d z = 6  (3) 

c = 0  a t z = O a n d O < t < ~ t l , t 2  <t<~t3 ,e tc .  

(4) 
~e 
Oz 0 at z = 0  and tl < t ~< t2, t3 < t ~< t4, etc. 

(s) 
where ca is the bulk concentration of the reacting 
ion and 6 is a distance from the electrode surface 
where the concentration of the reacting species is 
at its bulk value. For convective systems, 6 may be 
interpreted as the thickness of the Nernst diffusion 
layer. 

It is convenient to recast the problem in a 
dimensionless form by using the following dimen- 
sionless variables: 

e z Dt 
C = - - ,  ~" = ~-, r = - ~ .  (6) 

C~ 

The dimensionless equation and boundary 
conditions are 

3C 32C 
- ( 7 )  

and 
C =  1 a t r = 0 a n d a I l f  (8) 

C =  1 a t r > 0 a n d f = l  (9) 

C = 0 a t f = 0 a n d 0 < r < Z r l ,  
re < r ~ ra, etc. (10) 

0C 
= 0 a t f = 0 a n d r l < r < r 2 ,  

1"3 "~ T ~<~/"4, e tc .  (11) 

It is also useful to define a dimensionless on period 
rl by zl = Dh/62 and a dimensionless cycle time 
re by re =Dtz/8 z. The ratio of h / t~  or r l / r  e is 
known as the duty cycle in non-d.c, electrolysis. 

Since it is well known in non-d.c, electrolysis 
that the transient part of tile solution decays 
rather rapidly and the system reaches a periodic 
steady state after a few cycles [2], only the 
periodic steady state solution is sought in this 
paper. 

By using the method of separation of variables 
[7], the following periodic steady state solution 
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for Equation 7 subject to boundary conditions of 
Equations 8-11 can be obtained. 

(a) During the on period, 0 < (r - ~'m-1) ~< rl  

c(r, = 

f + ~ 0/'h exp [-- 3,11 (r -- r m_t)] sin (3,~ 1 ~') 

" '= '  02 )  

(b) During the off period, ~'1 < (r - rm -1) ~< ee 

c6", = 

1 4- ~ 13n, exp [-- /.t2n=O" -- Tm _l)] COS~n,f) 

(13) 
where %1 and/3n: are the coefficients of the series 
and m is an odd index. 

Xn, = nlTr (14) 

~tn2 = (2n~ -- 1)7r/2 (15) 

and 
2 

0/ni - -  
~kn~ 

- - 4  ~ exp [ - - g ~ ( r  c - r 0 ]  Xn, 

1 

(16) 

Equation 16 represents a recursion formula for 
0/nl. For a chosen n l ,  the right4mnd side of 
Equation 16 is expanded for ns = 1,2, 3 , . . .  L 
and summed over all possible values of n2. By 
varying the values of n 1 from 1 to L we can 
generate L linear equations for the unknowns 
0/1, 0 / 2 , 0 / 3 , "  �9 �9 O / L "  

In the present work, the series was truncated 
at a term whose magnitude is less than exp (-- 15). 
Consequently, the value of L is given by 

For given values of rl  and ~'c, 0/1,0/2,. �9 0/L can 
be calculated by using the Gauss-Jordan reduction 
method. 

Once the 0/nl's are known, Equation 12 can be 
used to calculate the concentration variation 
during the on-period of the cycle. The average 

limiting current density can then be calculated by 
using the method outlined by Cheh w4th the 
following result: 

1 { 
_ - - -  T 1 -1- ~ 0/n 1 

( id . e ) l  Tc n t = i 

[1 - -  exp (-- X2nl r l )] l  

(IS) 

where (iint)l is the average limiting current density 
under intermittent potential conditions. 

As rl and r e approach zero, L increases rapidly 
and the number of equations for %1 to be solved 
becomes very large. For example, at the reasonable 
experimental conditions of applying 1 ms pulses 
with a 0"01 cm diffusion layer thickness and 
10 -s cm 2 s -1 for the diffusion coefficient, rl has 
the value of 10 -4 and the number of equations 
which have to be solved is 123. Also, since %1 is 
dependent on the value of rl  and r e which vary 
with different experimental conditions, numerical 
tabulation of o/n1 at various values of t1  and r e is 
not suitable. It is therefore advantageous to seek 
approximate solutions with a reasonable degree of 
accuracy. To begin with, the upper and lower 
bounds for the rate of electrolysis under inter- 
mittent potential conditions are first derived in the 
following manner. 

Assume that the d.c. limiting current electroly- 
sis conditions prevail prior to the application of 
the intermittent potential. The concentration field 
is of course least uniform under the d.c. limiting 
current condition. The system is then open cir- 
cuited and during the time period (r e -- r 0 ,  the 
current is zero. The concentration field for the 
following on-period can be obtained by solving 
Equation 1 subject to appropriate boundary con- 
ditions based on the known concentration profile. 
The average limiting current during the first cycle 
can then be calculated by 

(Tint)l I~s t --- 
(id .c.)l 

cycle 

- -  r l  + [1 
n = 

rc I ~-~1 -- exp (-- X~trl)] 

% = 1 n~ = 1 g ~  exp 

211 -- exp (-- X 2 rO] 
X n, ..... (19) 
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With additional cycles the number of terms on the 
right-hand side of Equation 19 grows. But by using 
the property of a convergent series one can derive 
an expression for the upper bound for the average 
limiting current density. The result is 

( ;=)] I 
(ia.~)lll upp= 

- -  7-1 + ----  - - e x p  [-- ]A2n2(7-e - -  7"1)1" �9 
7-e 3 n. ~4n 2 

(20) 
To derive the lower bound, let us recall the fact 
that the maximum rate of electrolysis under 
pulsed current conditions is always lower than 
that under intermittent potential conditions. 
Therefore, we can use the following limiting 
current expression for pulsed electrolysis [2, 3] 
as the lower bound 

(;~011 = (7-,Ire) 
(id.e)lllower 

[ 1 - - 2  ~ 1 [exp (--,Un27-O--exp (-- ~2nre)] ]-I • 
n : , / ~  [1 -- exp (-- .2nT-e) ] t ) 

(21) 

3. Results and discussion 

The results are summarized in Figs. 1 and 2. Fig. 1 
shows the average limiting current density under 
intermittent potential conditions as calculated by 
Equation 18 as a function of the dimensionless 
cycle time for different duty cycles. As 71 and 7-c 
become very large, the behaviour of the system 
approaches that of the d.c. limiting current con- 
dition. The maximum rate of electrolysis is then 
given by the product of the maximum d.c. 
electrolysis rate and the duty cycle. 

For small values of 7-e, it is difficult to use 
Equation 18 to calculate the maximum rate of 
electrolysis. However, one can estimate the upper 
and lower bounds of the solution from Equations 
20 and 21. The difference between these two 
bounds diminishes as the duty cycle is increased. 
Taking the average value for the two bounds as an 
approximation leads to satisfactory results. On 
the other hand, the difference between the esti- 
mates obtained by using the two bounds increases 
as the duty cycle is decreased. However, based on 
physical reasoning, one may conclude that as the 
duty cycle approaches zero, the results from tile 
intermittent potential case are equivalent to that 
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Fig. 1. The average limiting electrolysis rate under inter- 
mittent potential conditions. 
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Fig. 2. The upper and lower bounds for average limiting 
electrolysis rate under intermittent potential conditions 
for short cycle times and a duty cycle of 0-2. The dashed 
line represents the exact solution. 
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from the pulsed current case. Fig. 2 is a numerical 
illustration o f  the theoretical results obtained by 
using Equations 20 and 21 at a duty cycle of  0"2 
for small cycle times. The dashed line represents 
the results using Equation 18. It is seen that the 
average of  the two bounds leads to a reasonable 
approximation of  the numerical solution. For 
instance, even at the relatively large value of  
re = 0"1, the estimated (Tm01/(ia.e) 1 from an 
average of  the upper and lower bounds is 0.745 
whereas the exact value is 0.740. Of course, one 
should note that at re >~ 0"1, Equation 18 can be 
used relatively easily to obtain an exact solution. 

4. Conclusions 

A numerical solution was obtained to calculate 
the average limiting current density under inter- 
mittent potential conditions. Due to the slow 
convergence of  the numerical series for small 
values of  on-period and cycle time, approximate 
methods based on estimating the upper and lower 
bounds of  the numerical solution were also 
developed. 

The most significan;, conclusion of  this work 
is that the maximum rate of  electrolysis under 

any non-d.c., mass transfer controlled conditions 
cannot exceed that from d.c. electrolysis. 
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